જો $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$ અને $x$ એ $3$ અથવા $4$ નો ગુણક હોય $\}$, જ્યાં $z^+$ એ ધન પૂર્ણાક નો ગણ હોય તો $A$ પર ના સંમિત સબંધો નો સંખ્યા મેળવો.
$2^5$
$2^{15}$
$2^{10}$
$2^{20}$
જો $A = \{1, 2, 3, 4\}$ અને $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ એ ગણ $A$ પરનો સંબંધ છે તો $R$ એ . . ..
સંબંધ $R$ એ $n \times n$ કક્ષાના વાસ્તવિક શ્રેણિક $A$ અને $B$ માટે આ મુજબ વ્યાખ્યાયિત છે : $"ARB$ તોજ અસ્તિત્વ ધરાવે જો કોઈ શૂન્યતર શ્રેણિક $P$ હોય કે જેથી $PAP ^{-1}= B "$ થાય તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.
ગણ $A = \{1,2,3,4, 5\}$ અને સંબંધ $R =\{(x, y)| x, y$ $ \in A$ અને $x < y\}$ તો $R$ એ . . .
જો $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $ એ $Z$ પરનો સંબંધ હોય તો $R$ નો પ્રદેશ મેળવો